Name:		Statistics		
Date:		Practice Quiz 8-E		
1. What does <i>df_N</i> stand for?				
df _N stands for	in the			
2. State the critical value(s) for the follow of 8.33, and a sample size of 9, and sam	J J J			

For $df_N =$ _____ or $df_D =$ _____ or $the \alpha =$ _____ F table, $F_0 =$ _____.

b) one-tailed, σ_1 hypothesized to be smaller than σ_2

a) one-tailed, σ_1 hypothesized to be larger than σ_2

size of 12. Estimate if needed.

	For $df_{M} =$	-1=	and $df_{p} =$	- =	in the α =	F table, F _o ≈	
--	----------------	-----	----------------	-------	-------------------	---------------------------	--

c) two-tailed

For $df_N =$ _____ -1 =_____ and $df_D =$ ______ in the $\alpha =$ _____ F table, $F_O =$ _____.

3. Nora has a heartrate monitor record time between beats (in milliseconds) on a low-stress day and on a high stress day. On the low-stress day, the times are 818, 800, 715, 890, 712, 799, 706, 710, 860, 881, and 704. On the high-stress day, the times are 840, 760, 779, 800, 734, 715, 755, 790, 759, and 803. She will do a two-tailed test. a) Calculate the sample variances.

The variance for low-stress heartrate is $s^2 = 2 = 2$, and the variance for high-stress heartrate is $s^2 = 2 = 2$.

b) Which variance will go in the numerator? Since this is a two-tailed test, the variance that is _______ goes in the numerator, which in this case is the ______-stress variance. If it were a one-tailed test, the variance that was ________ would go in the numerator. c) What is the critical value? For $df_u = ______ -1 = _____ and df_p = ______ -1 = _____ in the <math>\alpha = ______F$ table, $F_o = ______.$ d) Calculate *F*. $F = _______ = ______$ e) Are the data statistically significant? $________, because the calculated value of F is _______than _____.$ $f) State the conclusion, followed by <math>F_{df, df}$ and a range for *p*. Heartrate variance is _______ on low-stress days than on high-stress days, $F_{_____} = _____, p ____05$.

h) What would the conclusion have been if you had done a one-tailed test predicting that heartrate varies more during times of high stress than during times of low stress?

_,F _ =___,p___.05.