Chapter One

Introduction to Research Methods

Samples and Populations Measuring Data Relationships Bewteen Variables Causation

Populations and Samples

A **population** is a group that is being researched.

A **sample** is a subset of the population from which data are actually collected.

If the data collected include every relevant data value that exists, then the values calculated from the data are called population **parameters**. The field of math that uses parameters to predict sample values is called **probability**.

If relevant data exist that were not included in the data collection process, then the values calculated from the data are called sample **statistics**. The field of math that uses statistics to estimate population values is called **statistics**.

Value	Population	Sample	Sample example
Size	Ν	n	n = 24 high school seniors were surveyed.
Mean	μ ("mu")	⊼ ("x-bar")	The average age was $\bar{x} = 17.3$ years.
Standard Deviation	o ("sigma")	S	The standard deviation was $s = 0.42$ years.
Proportion	р	p ("p-hat")	$\hat{p} = 25\%$ of the students were taking Statistics.

Sampling bias occurs when a sample does not reasonably represent the population it is intended to represent. This may result in conclusions about the population that are actually only true for the sample.

Descriptive Statistics

Means and standard deviations are used to summarize numerical data sets. Proportions are used to summarize nonnumerical data sets.

Statistic	Description	When used	Example
Proportion	portion of a whole	Each value does or does not meet a specific criterion.	<i>Do you like ice cream?</i> 84% of respondents say yes.
Mean	average	Each value is numerical.	<i>How much ice cream do you eat each year?</i> The average of the responses is 4.3 gallons.
Standard Deviation	amount of variation	Each value is numerical.	<i>How much ice cream do you eat each year?</i> The standard deviation of the responses is 1.4 gallons.

Levels of Measurement

Data can be considered at one or more levels.

Level	Description	Examples	Explanation
Nominal	The data can be categorized.	Saturday Tuesday	Not ordinal, because Saturday could be before or after Tuesday.
Ordinal	The data can be put in order.	1 st 2 nd	Ordinal because 2 nd comes after 1 st , but not interval because it is unknown how long after.
Interval	Differences between data values are meaningful.	12:00 1:00	Interval because 12:00 is an hour before 1:00, but not ratio because 12:00 is not 12 times as much as 1:00 and 0:00 does not mean there is no time.
Ratio	Ratios between data values are meaningful. A value of zero means there is none of what is being measured.	1 hour late 3 hours late	Ratio because 3 hours is three times as much as 1 hour, and zero hours late means not late at all.

Operational Definitions

An **operational definition** states exactly how a variable will be measured.

Variable	Operational definition example 1	Operational definition example 2
Age	number of birthdays	years and months since birth
GPA	unweighted overall GPA last semester	weighted academic GPA for 11 th grade
Athleticism	number of pull-ups	mile time

For conceptual variables such as athleticism, researchers often mathematically combine multiple measures into a single value called an **index**.

Variables

Туре	Description	Example
Independent	hypothesized to affect the dependent	Reading the notes causes higher test
	variable directly or through mediator variables	scores.
Dependent	hypothesized to be affected by the	Test scores are improved by reading
	independent variable directly or through mediator variables	the notes.
Mediator	explains how the independent variable	Reading the notes gives students
	affects the dependent variable	clarifying questions to ask in class ,
		which causes higher test scores.
Moderator	influences the strength of the	Reading the notes affects test
	relationship between the independent	scores differently depending on
	variable and dependent variable	how conceptual the chapter is.
Extraneous	affects the dependent variable, but	Amount of extracurricular activities
	does not fit into any category above	affects test scores.
Confounding	extraneous variable that shows how	Better students are more likely to
	the independent variable is linked	read the notes and are also more likely
	to the dependent variable without	to do well on tests whether or not they
	directly or indirectly affecting it	read the notes.

Research Designs

Design	Description	Example
Experimental	The independent variable has two or more conditions, and each par- ticipant is randomly assigned to one condition or one order of conditions.	20% 10% 0% Do rewards reduce tardies? To reward none reward reward
Quasi-Experimental	The independent variable has two or more conditions, but there is no random assignment.	20%10%0%Tardies by9th12thgrade levelgrade level
Factorial	There are two or more factors (independent and/or moderator variables). Each can be either experimental or quasi-experimental.	20%no rewardraffle tickets10%0%0%9thDo rewards9threduce tardies?grade level
Correlational	The variables are not categorical, and therefore there is no random assignment.	4.0 2.0 0.0 Tardies and 0 Grades (%)
Observational	The participants are not influenced by the study.	The studies above that do not involve rewards may be observational.

Factorial Designs

When there is more than one factor, the effect of one factor on the dependent variable may vary based on another factor.

In the example shown here, the first factor is the independent variable of whether participants were given designer or nondesigner clothes to wear, and the second factor is the moderator variable of sex. The dependent variable is how confident participants feel wearing these clothes.

Effect	Description	Example
Main	the overall effect of an independent variable on	Wearing designer clothes
	a dependent variable	increases people's confidence.
Simple	the effect of an independent variable on a	Wearing designer clothes
	dependent variable within one specific level of	increases men's confidence.
	another independent or moderator variable	
Interaction	a difference in effect of the independent	Wearing designer clothes
	variable on the dependent variable across	increases women's confidence
	different levels of another independent or	more than it increases men's
	moderator variable	confidence.

Extraneous and Confounding Variables

Variable	Extraneous but not confounding	Confounding
Type of	Random error: All conditions are affected	Systematic error: Some conditions are
error	randomly, and thus approximately	systematically affected differently than
created	equally.	others.
Problem	Due to the random noise, the data	The data may show the hypothesized
created	may not show the link between the	link between the independent variable
	independent variable and the dependent	and the dependent variable, but it is not
	variable, or, less commonly, may indicate	known if this is due to the independent
	a relationship when there is none.	variable or the confounding variable.
Severity of	Moderate: The researchers are more likely	Major: The researchers are likely to reach a
problem	to fail to reach a conclusion, but they are	conclusion that is not valid.
	not likely to reach a conclusion that is not	
	valid.	
How to	Using a large sample size averages out	Confounds from participant differences
avoid	random variations.	can be eliminated by random assignment.
		Confounds from procedural or environ-
		mental differences can be reduced by pilot
		studies, standardization of procedure, and
		careful critical analysis of method.

Correlation and Causation

Correlation does not imply causation: Two variables being related does not necessarily mean that one affects the other.

Relationship:	Correlation	Causation
Summary	The dependent variable can be	The dependent variable is affected by
	predicted by the independent variable.	the independent variable.
What it explains	what relationship exists between the	why the relationship exists between
	variables	the variables
How it can be	any study	only true experiments (that is, with
established		random assignment)
Confounding	may be the primary or only reason for	may be eliminated, because random
variables	the relationship—the independent	assignment can make the groups
	variable itself may have little or no	initially exactly identical other than
	effect on the dependent variable	random fluctuations
Example:	People with college degrees have	Posting identical resumes, except that
college degree	higher salaries on average. This could	some include a college degree and
and salary	be due to the degrees themselves, but	some do not, could determine whether
	it also could be due to confounding	or not degrees actually cause people to
	variables such as socioeconomic status	be offered higher salaries.
	and motivation.	

Affect and Effect

Discussions of causation frequently use forms of the words *affect* and *effect* and related words.

Word	Word type	Clarification	Examples
Affect(s)	verb	 has a subject, which is usually one of the following: an independent variable such as <i>age</i> a confounding variable such as <i>socioeconomic status</i> 	Smoking affects health. Childhood experiences affect adult personality.
Effect(s)	noun	 usually preceded by one of the following: the articles <i>the</i> or <i>an</i> an adjective, such as <i>significant</i> or <i>two</i> a possessive, such as <i>religion's</i> or <i>its</i> 	Alcohol has multiple effects. The data demonstrate music's effect on concentration.

In the context of causation, *affecting* and *affected* are spelled like affect, and *effective* and *effectiveness* are spelled like effect.