

INTERNATIONAL BACCALAUREATE
Mathematics: analysis and approaches
Math AA

EXERCISES [Math-AA 2.15]
MODULUS EQUATIONS AND INEQUALITIES
Compiled by Christos Nikolaidis

O. Practice questions

1. [Maximum mark: 15] **[without GDC]**

(a) Solve the following equations and inequalities [using the definition of $|x|$] [9]

$ x = 3$	
$ x < 3$	
$ x > 3$	
$ x = -3$	
$ x < -3$	
$ x > -3$	
$ x = 0$	
$ x < 0$	
$ x > 0$	

(b) Solve the following equation and inequalities [6]

$2 x - 3 = 0$	
$2 x - 3 < 0$	
$2 x - 3 > 0$	

2. [Maximum mark: 8] **[without GDC]**

(a) Solve the equation $|x - 5| = 3$. [3]
 (b) Solve the inequalities (i) $|x - 5| < 3$ (ii) $|x - 5| > 3$ [5]

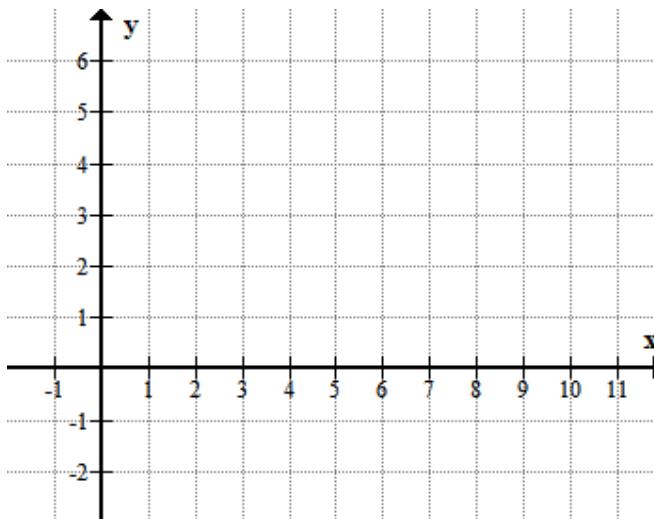
METHOD A: using the definition of $|x|$

METHOD B: by squaring both sides (since both sides are positive)

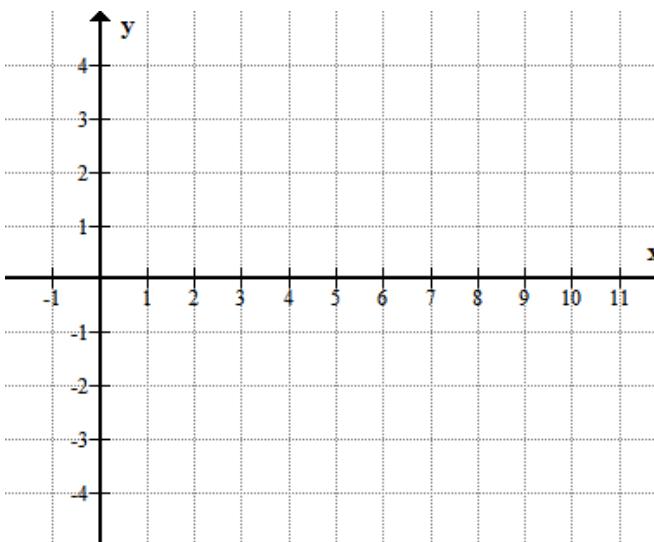
3. [Maximum mark: 7] **[with GDC]**

(a) (Using SolveN or the graph mode on your GDC), solve the equation $|x - 5| = 3$. [2]
 (b) (Using the graph mode, solve the inequalities (i) $|x - 5| < 3$ (ii) $|x - 5| > 3$ [4]

METHOD A: Draw the graphs of $y_1 = |x - 5|$ and $y_2 = 3$



METHOD B: Draw the graph of $y = |x - 5| - 3$



4. [Maximum mark: 8] **[with / without GDC]**

(a) Solve the equation $|x - 5| = |x - 3|$ [4]
 (b) Solve the inequality $|x - 5| < |x - 3|$ [4]

5*. [Maximum mark: 5] **[with / without GDC]**

Solve the inequality $x^2 - 3|x| + 2 > 0$

6*. [Maximum mark: 10] **[with / without GDC]**

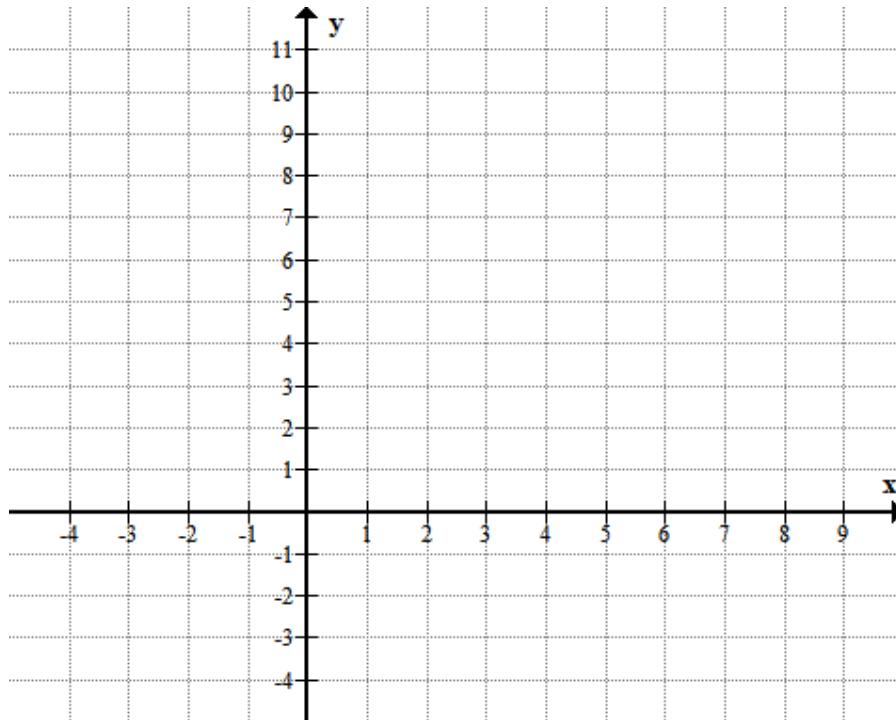
(a) Solve the equation $|x - 5| = x - 3$ [5]
 (b) Solve the inequality $|x - 5| < x - 3$ [5]

7*. [Maximum mark: 12] **[with / without GDC]**

(a) Solve the equation $|x - 5| = |x| - 3$ [6]
 (b) Solve the inequality $|x - 5| < |x| - 3$ [6]

8*. [Maximum mark: 8] **[without GDC]**

(a) Draw the graph of $f(x) = |x - 5| - |x| + 3$ [4]
 (b) Hence, solve the inequalities
 (i) $f(x) > 0$ (ii) $f(x) > 4$ (iii) $f(x) > -4$ (iv) $f(x) > 10$ [4]



A. Exam style questions (SHORT)

9. [Maximum mark: 6] **[without GDC]**

(a) Solve the equation $\left| \frac{2x-6}{7} \right| = 8$. [3]

(b) Solve the inequality $\left| \frac{2x-6}{7} \right| \leq 8$. [3]

10. [Maximum mark: 4] **[without GDC]**

Solve the equation $|x^2 - 9| = 7$.

11. [Maximum mark: 5] **[with / without GDC]**

Find the values of x for which $|5 - 3x| \leq |x + 1|$.

12. [Maximum mark: 5] **[with / without GDC]**

Solve the inequality $|x - 2| \geq |2x + 1|$.

13. [Maximum mark: 5] **[with GDC]**

Solve the inequality $\left| \frac{x+9}{x-9} \right| \leq 2$.

14. [Maximum mark: 6] **[without GDC]**

Solve the inequality $\left| \frac{x+1}{x} \right| \geq 2$.

15. [Maximum mark: 6] **[without GDC]**

Solve the inequality $|x - 5| - |x - 10| \leq 7$.

Notice: confirm the result by using the graph mode of the GDC

B. Exam style questions (LONG)

16. [Maximum mark: 14] **[without GDC]**

Let $f(x) = |x - 3| + |x + 2|$

(a) Draw the graph of the function f in the diagram below. [4]

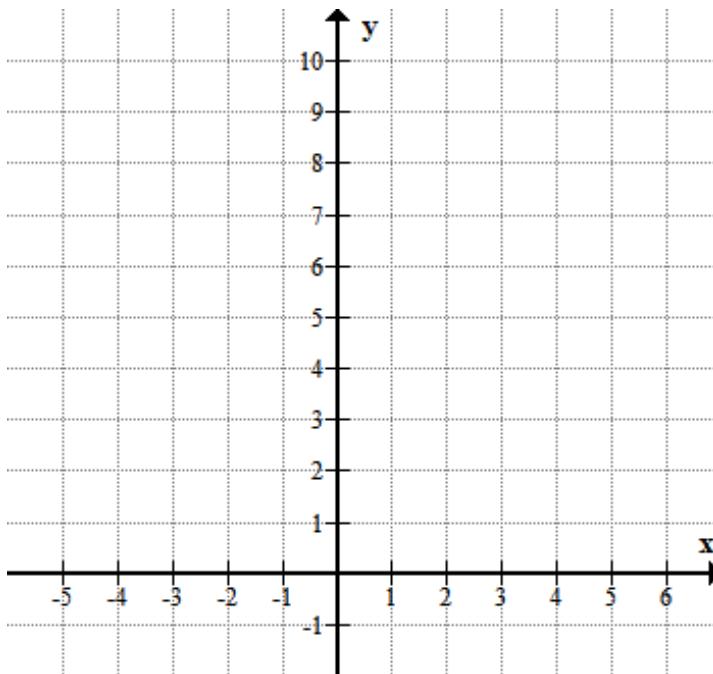
(b) Write down the range of f . [2]

(c) Express the function in the form $f(x) = \begin{cases} ax + b & x < -2 \\ c & -2 \leq x < 3 \\ dx + e & x \geq 3 \end{cases}$ [4]

(d) Hence, or otherwise,

(i) solve the equation $f(x) = 9$;

(ii) solve the inequality $f(x) \leq 9$. [4]



17. [Maximum mark: 14] **[without GDC]**

Let $f(x) = |x - 3| - |x + 2|$

(a) Draw the graph of the function f in the diagram below. [4]

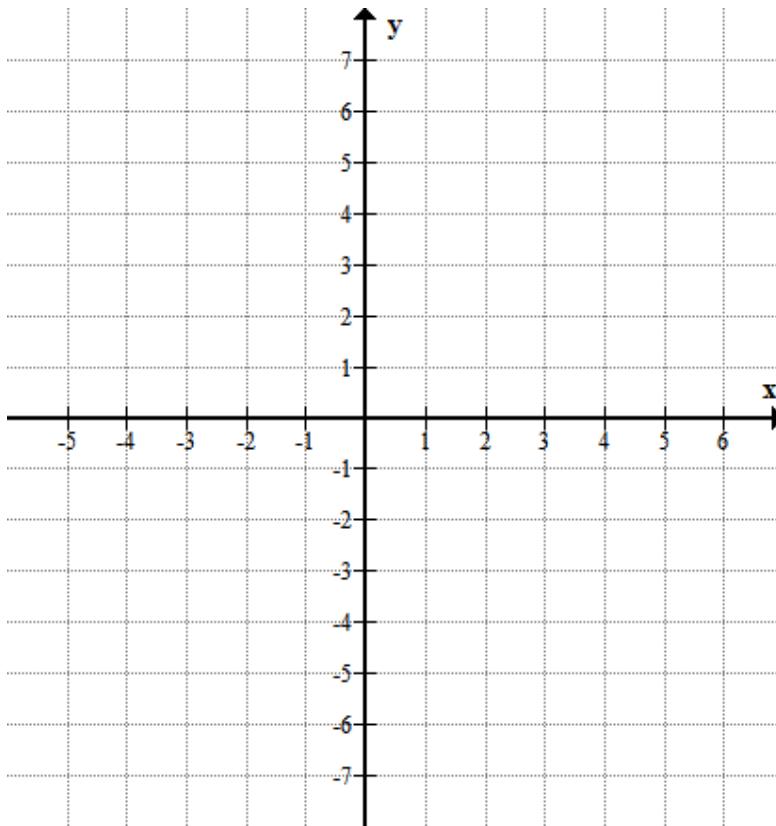
(b) Write down the range of f . [2]

(c) Express the function in the form $f(x) = \begin{cases} a & x < -2 \\ bx + c & -2 \leq x < 3 \\ d & x \geq 3 \end{cases}$ [4]

(d) Hence, or otherwise,

(i) solve the equation $f(x) = 0$;

(ii) solve the inequality $f(x) > 1$. [4]



18. [Maximum mark: 12] **[without GDC]**

Let $f(x) = |x|$, $g(x) = |2x - 5|$ and $h(x) = \frac{x+4}{2}$

- (a) Solve $f(x) > g(x)$ [5]
- (b) Solve $f(x) < h(x)$ [5]
- (c) Hence, solve $g(x) < f(x) < h(x)$. [2]