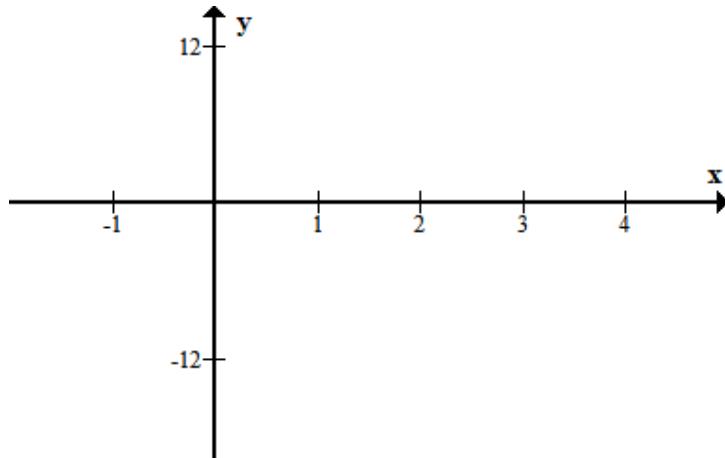


INTERNATIONAL BACCALAUREATE
Mathematics: analysis and approaches
Math-AA

EXERCISES [Math-AA 2.11-2.12]

POLYNOMIALS


Compiled by Christos Nikolaidis

O. Practice questions

1. [Maximum mark: 6] [with GDC]

The cubic polynomial $f(x) = 2x^3 - 12x^2 + 22x - 12$ has **three** real zeros

- (a) Show that $x = 1$ is a zero of $f(x)$. [1]
- (b) Find the remaining 2 zeros of $f(x)$ [using your GDC] [2]
- (c) Hence, express $f(x)$ in the form $f(x) = a(x - p)(x - q)(x - r)$ [1]
- (d) Sketch the graph of $y = f(x)$; indicate x -intercepts and y -intercepts. [2]

2. [Maximum mark: 6] [without GDC]

Consider the cubic polynomial $f(x) = 2x^3 - 12x^2 + 22x - 12$.

It is given that $x = 1$ is a zero of $f(x)$, that is $f(1) = 0$.

- (a) Use long division by $(x - 1)$ to express $f(x)$ in the form $f(x) = (x - 1)q(x)$, where $q(x)$ is a quadratic. [3]
- (b) Hence, find the remaining zeros of $f(x)$. [3]
- (c) Use long division of $f(x)$ by $q(x)$ to reconfirm the result found in (a). [2]

3. [Maximum mark: 6] **[without GDC]**

- (a) Use long division of $f(x) = 2x^3 + 9x^2 + 16x + 5$
- by $x^2 + 3x + 1$ to express $f(x)$ in the form $f(x) = (x^2 + 3x + 1)q(x) + r(x)$.
 - by $x - 2$ to express $f(x)$ in the form $f(x) = (x - 2)Q(x) + R$.
- (b) Hence, express
- $\frac{2x^3 + 9x^2 + 16x + 5}{x^2 + 3x + 1}$ in the form $ax + b + \frac{cx + d}{x^2 + 3x + 1}$
 - $\frac{2x^3 + 9x^2 + 16x + 5}{x - 2}$ in the form $A(x) + \frac{B}{x - 2}$

4. [Maximum mark: 4] **[without GDC]**

Let $f(x) = 6x^2 + 3x + 2$ and $g(x) = 2x - 5$

- (a) Use long division to express $f(x)$ in the form $f(x) = g(x)q(x) + r$.
- (b) Expand $g(x)q(x) + r$ found in (a) to confirm the result.
- (c) Hence, express $h(x) = \frac{6x^2 - 3x + 2}{2x - 5}$ in the form $Ax + B + \frac{C}{2x - 5}$

5. [Maximum mark: 4] **[without GDC]**

Use long division to express $f(x) = \frac{5x^2 - 3x + 2}{x^2 - 3x - 1}$ in the form $A + \frac{Bx + C}{x^2 - 3x - 1}$

6. [Maximum mark: 8] **[without GDC]**

Consider the cubic function $f(x) = ax^3 + 2x^2 + 3x + 4$. Find the value of a in each of the following cases

- (a) the graph of the function passes through the point $(1, 10)$. [2]
- (b) $f(x)$ is divisible by $(x - 1)$. [2]
- (c) when $f(x)$ is divided by $(x - 1)$, the remainder is 10. [2]
- (d) Confirm the result in (c) by using long division. [2]

7. [Maximum mark: 5] **[without GDC]**

Let $f(x) = x^5 + x^4 + x^3 + x^2 + x + 1$.

- (a) Use the **factor theorem** to show that $f(x)$ is divisible by $x + 1$ [2]
- (b) Use the **remainder theorem** to find
- the remainder when $f(x)$ is divided by $x - 1$.
 - the remainder when $f(x)$ is divided by $x - 2$. [3]

8. [Maximum mark: 5] **[without GDC]**

The polynomial $f(x) = x^5 + x^4 + x^3 + x^2 + ax + b$ is divisible by $x + 1$ and leaves a remainder of 6 when divided by $x - 1$. Find the values of a and b

9. [Maximum mark: 13] **[without GDC]**

$f(x) = ax^3 + bx^2 + 4x + 4$ is divisible by $x^2 - 3x + 2$. Find the values of a and b .

- 10*. [Maximum mark: 13] **[without GDC]**

When $f(x) = ax^3 + bx^2 + 3x + 4$ is divided by $x^2 - 3x + 2$ the remainder is $2x + 2$

Find the values of a and b

11. [Maximum mark: 10] **[with / without GDC]**

Consider the cubic function $f(x) = 2x^3 + ax^2 + bx + c$. Find the values of a, b, c

(a) if the graph of the function passes through the points $(1,0)$, $(-1,2)$, and $(0,3)$. [5]

(b) if the graph of the function passes through the points $(1,0)$, $(-1,0)$, and $(3,0)$. [5]

12. [Maximum mark: 8] **[without GDC]**

Consider the polynomial $f(x) = 4x^3 - 4x^2 - 5x + 3$.

(a) Show that $x = -1$ is a root of $f(x)$. [1]

(b) Find the other two roots of $f(x)$ by using long division. [5]

(c) Express the polynomial in the form $f(x) = (x - a)(bx - c)(dx - e)$, where $a, b, c, d, e \in \mathbb{Z}$. [2]

13. [Maximum mark: 12] **[with GDC]**

For the general form of a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$

$$\text{Sum of roots } S = -\frac{a_{n-1}}{a_n} \quad \text{Product of roots } P = (-1)^n \frac{a_0}{a_n}$$

Use your GDC to find the roots of the following polynomials and then confirm the formulas for S and P (as in the first example).

Roots	Their sum	Their product	S	P
$f(x) = 2x^3 - 12x^2 + 22x - 12$				
1, 2, 3	$1 + 2 + 3 = 6$	$1 \times 2 \times 3 = 6$	$S = -\frac{-12}{2} = 6$	$P = -\frac{-12}{2} = 6$
$f(x) = 4x^3 - 16x^2 + 19x - 6$				
$f(x) = 4x^4 - 20x^3 + 35x^2 - 25x + 6$				
$f(x) = x^3 + 6x^2 + 9x$				

14. [Maximum mark: 12] **[without GDC]**

Complete the following table: for each polynomial find the sum and the product of the roots (allowing non-real roots and repetition of roots).

Polynomial	Sum of roots	Product of roots
$f(x) = 2x^4 + 6x^3 + 5x^2 - 7x + 8$		
$f(x) = 2x^5 + 6x^3 + 5x^2 - 7x + 8$		
$f(x) = x^{10} - x^9 - 1$		

15. [Maximum mark: 4] **[without GDC]**

The cubic function $f(x) = ax^3 + 6x^2 - 8x - 9$ has three real roots. Their sum is -2 .

- (a) Find the value of a . [2]
 (b) Find the product of the three roots. [2]

16. [Maximum mark: 4] **[with GDC]**

The cubic $f(x) = ax^3 + bx^2 - 9x - 8$ has three real roots. The sum of the roots is -3 while their product is 4 . Find the three roots.

17. [Maximum mark: 12] **[without GDC]**

Let α, β be the (non-real) roots of the quadratic $y = 2x^2 + 4x + 6$

- (a) Write down the values of (i) $\alpha + \beta$ (ii) $\alpha\beta$. [2]
 (b) Find the value of $\alpha^2 + \beta^2$. [2]
 (c) Find the value of $(\alpha - \beta)^2$. [2]
 (d) Find a quadratic with roots $\alpha^2\beta$ and $\alpha\beta^2$ [3]
 (e) Find a quadratic with roots α^2 and β^2 [3]

A. Exam style questions (SHORT)

18. [Maximum mark: 4] **[without GDC]**

Consider $f(x) = x^3 - 2x^2 - 5x + k$. Find the value of k if $(x+2)$ is a factor of $f(x)$.

19. [Maximum mark: 4] **[without GDC]**

When the function $f(x) = 6x^4 + 11x^3 - 22x^2 + ax + 6$ is divided by $(x+1)$ the remainder is -20 . Find the value of a .

20. [Maximum mark: 4] **[without GDC]**

When $x^4 + ax + 3$ is divided by $(x-1)$, the remainder is 8 . Find the value of a .

21. [Maximum mark: 10] **[without GDC]**

The polynomial $p(x) = x^3 + ax^2 - 3x + b$ is divisible by $(x-2)$ and has a remainder 6 when divided by $(x+1)$.

(a) Find the value of a and of b . [5]

(b) Factorise completely $p(x)$ and state its roots. [5]

- 22*. [Maximum mark: 6] **[without GDC]**

The polynomial $p(x) = (ax+b)^3$ leaves a remainder of -1 when divided by $(x+1)$, and a remainder of 27 when divided by $(x-2)$. Find the values of a and b .

23. [Maximum mark: 6] **[without GDC]**

The polynomial $f(x) = x^3 + 3x^2 + ax + b$ leaves the same remainder when divided by $(x-2)$ as when divided by $(x+1)$.

(a) Find the value of a . [5]

(b) State the possible values of b . [1]

24. [Maximum mark: 7] **[without GDC]**

Given that $(x-2)$ and $(x+2)$ are factors of $f(x) = x^3 + px^2 + qx + 4$,

(a) find the value of p and of q . [5]

(b) solve the equation $f(x) = 0$. [2]

25. [Maximum mark: 7] [without GDC]

The polynomial $P(x) = 2x^3 + ax^2 - 4x + b$ is divisible by $(x-1)$ and by $(x+3)$.

- (a) Find the value of a and of b . [5]
 (b) Factorise $f(x)$. [2]

26. [Maximum mark: 8] [without GDC]

The polynomial $x^2 - 4x + 3$ is a factor of $x^3 + (a-4)x^2 + (3-4a)x + 3$.

- (a) Calculate the value of the constant a . [4]
 (b) Factorise completely the cubic polynomial. [2]
 (c) Find the remainder when the cubic is divided by $(x-2)$. [2]

27*. [Maximum mark: 13] [without GDC]

Consider the cubic function $f(x) = ax^3 + bx^2 + 3x + 4$. Find the values of a and b in each of the following cases

- (a) $f(x)$ is divisible by $(x-1)$ and leaves a remainder 6 when divided by $(x+1)$. [4]
 (b) $f(x)$ is divisible by $(x^2 - 1)$. [4]
 (c) $f(x)$ leaves a remainder $-3x + 3$ when divided by $(x^2 - 1)$. [5]

28. [Maximum mark: 6] [with GDC]

When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)$ the remainder is -2 . When $P(x)$ is divided by $(2x-1)$ the remainder is $\frac{13}{4}$. Find the value of p and of q .

29*. [Maximum mark: 7] [with GDC]

When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$.

Find the value of p and of q .

30. [Maximum mark: 7] [without GDC]

Let α, β be the roots of the quadratic $f(x) = x^2 - 2x + 5$. Without finding α and β

- (a) Find the value of $\alpha^2 + \beta^2$ [3]
 (b) Find a quadratic with integer coefficients and roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$. [4]

31. [Maximum mark: 6] [without GDC]

The roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$

are such that $\alpha^2 + \beta^2 = 13$. Find the possible values of the real number k .

B. Exam style questions (LONG)

32. [Maximum mark: 12] **[without GDC]**

The polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ is divisible by $x^2 - 3x + 2$.

The sum of its roots is 7 and the product of its roots is 0.

- (a) Find the values of a , b , c and d . [8]
- (b) Factorize $f(x)$. [4]

33. [Maximum mark: 10] **[without GDC]**

The polynomial $f(x) = x^4 - 2x^3 + ax^2 + bx + 3$ is divisible by $(x-1)$ and the quotient of the division is the polynomial $q(x)$.

- (a) Find the sum and the product of the roots of $f(x)$. [2]
- (b) State the degree of $q(x)$. [1]
- (c) Find the sum of a and b . [3]
- (d) Find the sum and the product of the roots of $q(x)$. [4]

34. [Maximum mark: 12] **[without GDC]**

Let $f(x) = ax^4 + bx^3 + cx^2 + dx + 16$. The sum and the product of the roots of $f(x)$ are both 8.

- (a) Find the values of a and b . [3]

The polynomial $f(x)$ is divisible by $(x-1)$ and $f(x) = (x-1)q(x)$.

When $f(x)$ is divided by $(x+1)$ the remainder is 120.

- (b) Find the values of c and d . [5]
- (c) Find the sum and the product of the roots of $q(x)$. [4]

- 35*. [Maximum mark: 20] **[with GDC]**

Let α, β be the roots of the quadratic $f(x) = 5x^2 - 2x - 4$. Without finding α and β

- (a) Write down the values of (i) $\alpha + \beta$ (ii) $\alpha\beta$. [2]
- (b) Find the values of (i) $\alpha^2 + \beta^2$ (ii) $\alpha^3 + \beta^3$ [5]
- (c) Find a quadratic with integer coefficients which has roots $\frac{1}{\alpha}, \frac{1}{\beta}$. [5]
- (d) Find a quadratic with integer coefficients and roots α^2 and β^2 [4]
- (e) Find a quadratic with integer coefficients and roots α^3 and β^3 [4]

36*. [Maximum mark: 16] [without GDC]

For a cubic function $ax^3 + bx^2 + cx + d$ with roots r_1, r_2, r_3 , it is given that

$$S_1 = r_1 + r_2 + r_3 = -\frac{b}{a}, \quad S_2 = r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{c}{a}, \quad S_3 = r_1 r_2 r_3 = -\frac{d}{a}$$

Let α, β, γ be the roots of the cubic function $f(x) = x^3 - 5x^2 - 7x + 3$

Without evaluating the roots α, β, γ , find

- (a) $\alpha + \beta + \gamma$, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. [3]
- (b) $\alpha^2 + \beta^2 + \gamma^2$. [4]
- (c) $(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$. [5]
- (d) a cubic polynomial which has roots $\alpha^2, \beta^2, \gamma^2$. [4]

37*. [Maximum mark: 15] [with GDC]

Consider the following cubic polynomial

$$f(x) = (x - 1)(x^2 + (2 - k)x + k^2)$$

- (a) Show that $x = 1$ cannot be a root of the quadratic factor $(x^2 + (2 - k)x + k^2)$. [4]
- (b) Find the values of k in each of the following cases
 - (i) if the polynomial has exactly one real root;
 - (ii) if the polynomial has exactly two distinct real roots;
 - (iii) if the polynomial has three distinct real roots. [7]
- (c) Find the roots of $f(x)$ for each value of k in case (b)(ii). [4]