

INTERNATIONAL BACCALAUREATE
Mathematics: analysis and approaches
Math AA

EXERCISES [Math-AA 1.11-1.12]
COMPLEX NUMBERS (CARTESIAN FORM)
Compiled by Christos Nikolaidis

CARTESIAN FORM

O. Practice questions

1. [Maximum mark: 13] **[without GDC]**

Complete the following table

z	$\text{Re}(z)$	$\text{Im}(z)$	z^*	$ z $	$z \cdot z^*$
$2 + 3i$	2	3	$2 - 3i$	$\sqrt{2^2 + 3^2} = \sqrt{13}$	$(2 + 3i)(2 - 3i) = 4 + 9 = 13$
$3 + 2i$					
$i - 1$					
$3 + 4i$					
$3 - 4i$					
$-3 + 4i$					
$-3 - 4i$					
$2i$					
$-2i$					
2					
-2					
0					
$a + bi$					
$a - bi$					

2. [Maximum mark: 12] **[without GDC]**

Let $z_1 = 10 + 5i$ and $z_2 = 3 + 4i$

(a) Find the following results in the form $x + yi$.

$z_1 + z_2$	
$z_1 - z_2$	
$z_1 z_2$	
$\frac{z_1}{z_2}$	

[6]

(b) Find the following values

$ z_1 $	
$ z_1 + z_2 $	
$\left \frac{z_1}{z_2} \right $	

$ z_2 $	
$ z_1 - z_2 $	
$\left \frac{z_1}{z_2} \right $	

[6]

[Confirm the results with your GDC]

3. [Maximum mark: 6] **[without GDC]**

Find the following values

i^2	
i^4	
i^8	
i^{100}	
i^{53}	
$(2i)^3$	

i^3	
i^5	
i^{10}	
i^{101}	
i^{111}	

$(2i)^4$	
----------	--

[Confirm the results with your GDC]

4. [Maximum mark: 6] **[without GDC]**

Let $z = 2 + 3i$. Express the following powers of z in the form $a + bi$, where $a, b \in \mathbb{Z}$

(i) z^2 (ii) z^3 (iii) z^4

[Confirm the results with your GDC]

5. [Maximum mark: 6] **[without GDC]**

(a) Find $(1 - i\sqrt{3})^2$ in the form $x + yi$, where $x, y \in \mathbb{R}$. [3]

(b) Find $(1 - i\sqrt{3})^3$ in the form $x + yi$, where $x, y \in \mathbb{R}$. [3]

[Confirm the results with your GDC]

6. [Maximum mark: 6] **[without GDC]**

Let $f(z) = z^2 - 8z + 20$.

(a) Find the discriminant Δ of the quadratic function f . [1]

(b) Find the complex roots of the equation $f(z) = 0$ in the form $z = x \pm yi$ [3]

(c) Use factorisation to express f in the form $f(z) = (z - h)^2 + k$. [2]

[Confirm question (b) with your GDC]

7. [Maximum mark: 4] **[with / without GDC]**

Find the complex roots of the quadratic equations

(i) $z^2 + 4 = 0$. (ii) $z^2 + 3 = 0$

8. [Maximum mark: 10] **[with / without GDC]**

Let $f(z) = 4z^2 - 8z + 13$.

(a) Find the discriminant Δ of the quadratic function f . [1]

(b) Find the complex roots of the equation $f(z) = 0$, in the form $z = x \pm yi$. [3]

(c) Confirm that the sum S and the product P of the roots are given by

(i) $S = -\frac{b}{a}$. (ii) $P = \frac{c}{a}$. [4]

(d) By using factorisation, express f in the form $f(z) = a(z - h)^2 + k$. [2]

[Confirm question (b) with your GDC]

9. [Maximum mark: 4]

(a) Given that $(a - 2) + 3i = 7 + (b - 1)i$, find the value of a and of b , where $a, b \in \mathbb{Z}$. [2]

(b) Given that $(c - 2) + (d - 1)i = 0$, find the value of c and of d , where $c, d \in \mathbb{Z}$. [2]

10. [Maximum mark: 9] **[without GDC]**

Let $z = x + yi$. Find the values of x and y if $(2 + 5i)z = 1 + 17i$

(a) by using division (an equation of the form $az = b$, implies $z = b/a$) [4]

(b) by substituting $z = x + yi$ in the equation and solving the simultaneous equations. [5]

11. [Maximum mark: 10] **[without GDC]**

Solve the equations

(a) $(2 + 5i)z + 9 = 3z + 19i$ [5]

(b) $(2 + 5i)z + 8 = 3\bar{z} + 20i$ [5]

A. Exam style questions (SHORT)

12. [Maximum mark: 6] **[without GDC]**

Let the complex number z be given by $z = 1 + \frac{i}{i - \sqrt{3}}$.

Express z in the form $a + bi$, giving the **exact** values of the real constants a, b .

[Confirm question (b) with your GDC]

13. [Maximum mark: 5] **[without GDC]**

Express $\frac{1}{(1 - i\sqrt{3})^3}$ in the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$.

[Confirm question (b) with your GDC]

14. [Maximum mark: 6] **[without GDC]**

Let $z = \frac{2}{1-i} + 1 - 4i$. Express z^2 in the form $x + yi$ where $x, y \in \mathbb{Z}$.

[Confirm question (b) with your GDC]

15. [Maximum mark: 6] **[without GDC]**

Consider the equation $2(p + iq) = q - ip - 2(1 - i)$, where p and q are both real numbers. Find p and q .

16. [Maximum mark: 6] **[without GDC]**

Given that $(a + i)(2 - bi) = (7 - i)$, find the value of a and of b , where $a, b \in \mathbb{Z}$.

17. [Maximum mark: 4] **[with / without GDC]**

Find the values of a and b , where a and b are real, given that $(a + bi)(2 - i) = 5 - i$

18. [Maximum mark: 4] **[with / without GDC]**

Let $z = x + yi$. Find the values of x and y if $(1-i)z = 1 - 3i$.

19. [Maximum mark: 5] **[without GDC]**

The complex number z satisfies $i(z+2) = 1 - 2z$, where $i = \sqrt{-1}$. Write z in the form $z = a + bi$, where a and b are real numbers.

20. [Maximum mark: 6] **[without GDC]**

The two complex numbers $z_1 = \frac{a}{1+i}$ and $z_2 = \frac{b}{1-2i}$ where $a, b \in \mathbb{R}$, are such that

$z_1 + z_2 = 3$. Calculate the value of a and of b .

21. [Maximum mark: 6] **[without GDC]**

Solve the following equation for z , where z is a complex number.

$$\frac{z}{3+4i} + \frac{z-1}{5i} = \frac{5}{3-4i}$$

Give your answer in the form $a + bi$, where $a, b \in \mathbb{Z}$

22. [Maximum mark: 6] **[without GDC]**

Given that $|z| = 2\sqrt{5}$, find the complex number z that satisfies the equation

$$\frac{25}{z} - \frac{15}{z^*} = 1 - 8i.$$

23. [Maximum mark: 6] **[with / without GDC]**

Let z_1 and z_2 be complex numbers. Solve the simultaneous equations

$$\begin{aligned} 2z_1 + 3z_2 &= 7 \\ z_1 + iz_2 &= 4 + 4i \end{aligned}$$

Give your answers in the form $z = a + bi$, where $a, b \in \mathbb{Z}$.

24*. [Maximum mark: 7] **[without GDC]**

Consider $w = \frac{z}{z^2 + 1}$ where $z = x + yi$, $y \neq 0$ and $z^2 + 1 \neq 0$.

Given that $\operatorname{Im} w = 0$, show that $|z| = 1$.

25*. [Maximum mark: 6] **[without GDC]**

If $z = x + yi$ is a complex number and $|z+16| = 4|z+1|$, find the value of $|z|$.

POLYNOMIALS

O. Practice questions

26. [Maximum mark: 10] **[with GDC]**

For a cubic polynomial $f(z) = a_3z^3 + a_2z^2 + a_1x + a_0$, we know that the **sum** S and the **product** P of the roots are given by $S = -\frac{a_2}{a_3}$ and $P = -\frac{a_0}{a_3}$.

Let $f(z) = z^3 - 3z^2 + 7z - 5$

- (a) Find the **real root** and the two **complex roots** of $f(z)$ (using GDC). [2]
- (b) Confirm the formulas above for the sum S and the product P of the roots. [4]
- (c) Write down the three linear factors of $f(z)$ (with complex coefficients). [2]
- (d) **Hence**, express $f(z)$ in the form $(z - a)(z^2 + bz + c)$ where $a, b, c \in \mathbb{Z}$. [2]

27. [Maximum mark: 10] **[with GDC]**

For the polynomial $f(z) = a_4z^4 + a_3z^3 + a_2z^2 + a_1x + a_0$, we know that the **sum** S and the **product** P of the roots are given by $S = -\frac{a_3}{a_4}$ and $P = \frac{a_0}{a_4}$.

Let $f(z) = 2z^4 - 10z^3 + 26z^2 - 38z + 20$

- (a) Find the two **real roots** and the two **complex roots** of $f(z)$ (using GDC). [2]
- (b) Confirm the formulas above for the sum S and the product P of the roots. [4]
- (c) Write down the four linear factors of $f(z)$ (with complex coefficients). [2]
- (d) Express $f(z)$ in the form $a(z - p)(x - q)(z^2 + bz + c)$ where $a, p, q, b, c \in \mathbb{Z}$ [2]

28. [Maximum mark: 8] **[with / without GDC]**

Consider the polynomial $f(z) = 2z^4 + az^3 + 26z^2 + bz + 20$.

Given that 1 and 2 are roots of the polynomial

- (a) find the values of a and b . [4]
- (b) find the other two roots of $f(z)$. [4]

29. [Maximum mark: 6] **[without GDC]**

Consider the polynomial $f(z) = 2z^4 - 10z^3 + 26z^2 - 38z + 20$

Given that $z = 1 - 2i$ is a root find the other 3 roots of $f(z)$.

30. [Maximum mark: 6] **[without GDC]**

Find the polynomial $f(z)$ of degree 4, given that

- 3 of the zeros of the polynomial are $1 - 2i$, 1 , 2
- $f(z)$ leave a remainder 96 when it is divided by $z + 1$.

A. Exam style questions (SHORT)

31. [Maximum mark: 5] **[without GDC]**

$(z + 2i)$ is a factor of $2z^3 - 3z^2 + 8z - 12$. Find the other two factors.

32. [Maximum mark: 6] **[without GDC]**

Let $P(z) = z^3 + az^2 + bz + c$, where a, b and $c \in \mathbb{R}$. Two of the roots of $P(z) = 0$ are -2 and $(-3 + 2i)$. Find the value of a , of b and of c .

33. [Maximum mark: 6] **[without GDC]**

The polynomial $P(z) = z^3 + mz^2 + nz - 8$ is divisible by $(z + 1 + i)$, where $z \in \mathbb{C}$ and $m, n \in \mathbb{R}$. Find the value of m and of n .

METHOD A: Use $P(-1 - i) = 0$ [not the ideal way; just for practice!]

METHOD B: Find first the three roots of $P(z)$, and use factorization [Much quicker!]

B. Exam style questions (LONG)

34. [Maximum mark: 10] **[without GDC]**

(a) Evaluate $(1+i)^2$, where $i = \sqrt{-1}$. [2]

(b) Prove, by mathematical induction, that $(1+i)^{4n} = (-4)^n$, where $n \in \mathbb{N}^*$. [6]

(c) Hence or otherwise, find $(1+i)^{32}$. [2]

35. [Maximum mark: 13] **[without GDC]**

Let $z = a + bi$ and $w = c + di$,

(a) Express zw in the form $x + yi$ [2]

(b) Show that $|zw|^2 = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2$ [2]

(c) Show that $\overline{z+w} = \bar{z} + \bar{w}$ [2]

(d) Show that $\overline{zw} = \bar{z} \bar{w}$ [3]

(e) Show that $|zw| = |z||w|$ [4]

36. [Maximum mark: 12] **[without GDC]**

It is given that $\overline{zw} = \bar{z} \bar{w}$ and $|zw| = |z||w|$ for any complex numbers z and w .

Show, by using mathematical induction, that for any $n \geq 2$ it holds

(a) $\overline{z^n} = \bar{z}^n$ [6]

(b) $|z^n| = |z|^n$ [6]