

INTERNATIONAL BACCALAUREATE
Mathematics: analysis and approaches

Math AA

EXERCISES [Math-AA 2.13-2.14]

RATIONAL FUNCTIONS – INEQUALITIES

Compiled by Christos Nikolaidis

O. Practice questions

1. [Maximum mark: 18] **[without GDC]**

For the following functions write down the roots, the y -intercept, the vertical and horizontal asymptotes (if there exist), the domain and the range.

	$f(x) = \frac{3x+8}{2x+7}$	$f(x) = \frac{8}{2x+7}$	$f(x) = \frac{3x+8}{7}$
Roots			
y -intercept			
V.A.			
H.A.			
Domain			
Range			

2. [Maximum mark: 15] **[without GDC]**

For the following functions write down the roots, the y -intercept, the vertical and horizontal asymptotes and the domain.

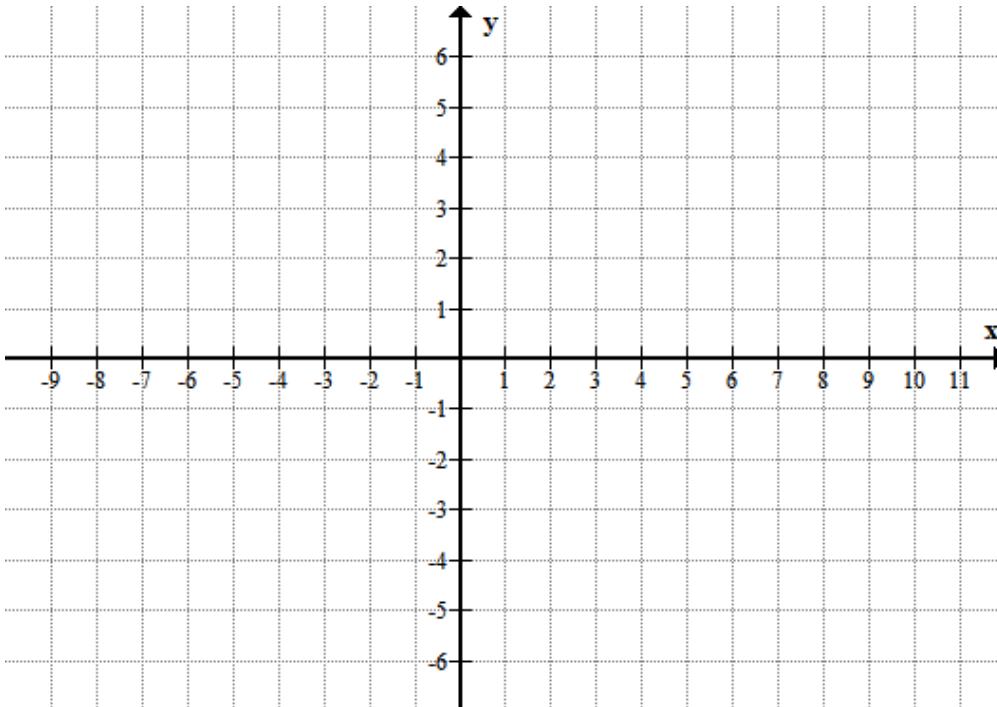
	$f(x) = \frac{(x-3)(x-4)}{(x+1)(x-2)}$	$f(x) = \frac{(2x-3)(x-4)}{(x+1)(x-2)}$	$f(x) = \frac{2x-3}{(x+1)(x-2)}$
Roots			
y -intercept			
V.A.			
H.A.			
Domain			

3. [Maximum mark: 10] **[without GDC]**

For the following functions, find all the asymptotes (horizontal, vertical, or oblique).

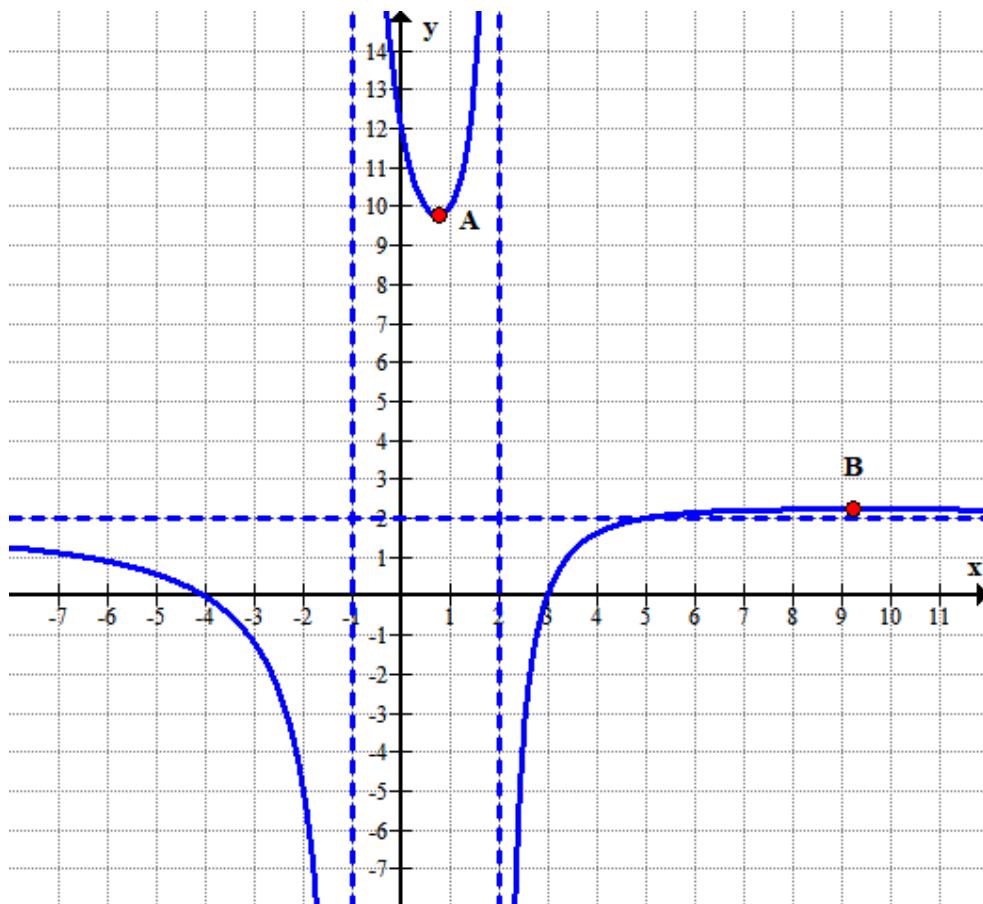
(a) $f(x) = \frac{4x^2 + 4x + 1}{2x + 3}$ [4]

(b) $f(x) = \frac{2x^3 + 5x^2 + 4x + 1}{x^2 - x - 2}$ [6]


4. [Maximum mark: 10] **[without GDC]**

Let $f(x) = \frac{(x-1)(x-6)}{(x+2)(x-3)}$.

(a) Solve the equation $f(x) = 1$. [3]


(b) On the diagram below, sketch the graph of $y = f(x)$. Indicate all the asymptotes, the x - and the y -intercepts, and the information found in (a). [5]

(c) Hence, write down the domain and the range of f . [2]

5. [Maximum mark: 7] **[with GDC]**

The following diagram shows part of the graph of $f(x) = \frac{2x^2 + 2x - 24}{x^2 - x - 2}$

(a) Express $f(x)$ in the form $f(x) = \frac{2(x+a)(x-b)}{(x+c)(x-d)}$, where $a, b, c, d \in \mathbb{Z}^+$. [2]

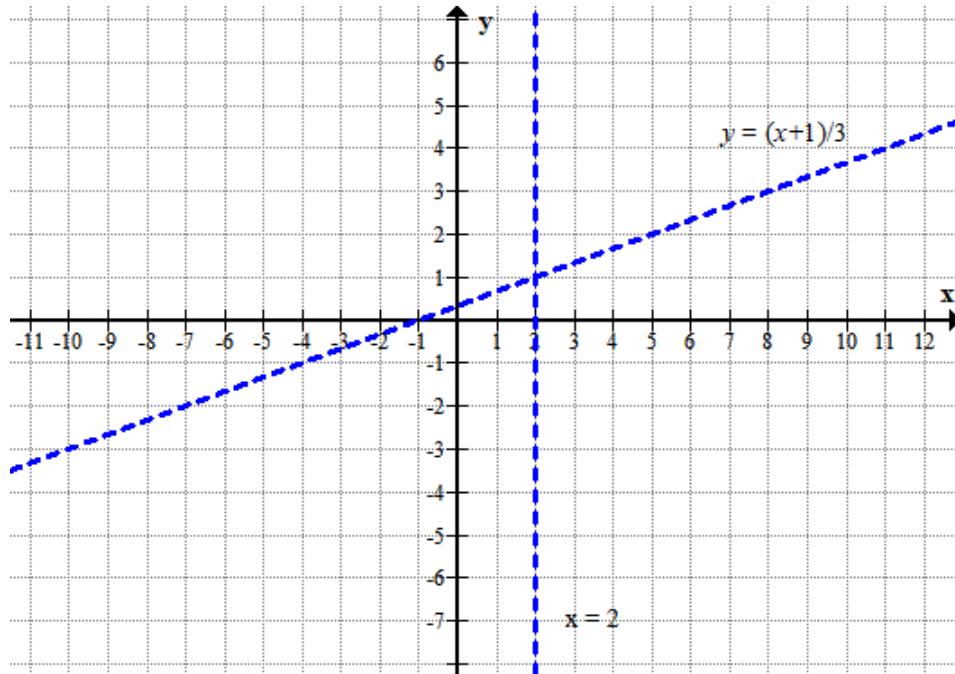
(b) Write down the equations of the horizontal and the vertical asymptotes. [2]

There is a local minimum at point A and a local maximum at point B as shown above.

(c) Write down the coordinates of A and B and hence the range of $f(x)$. [3]

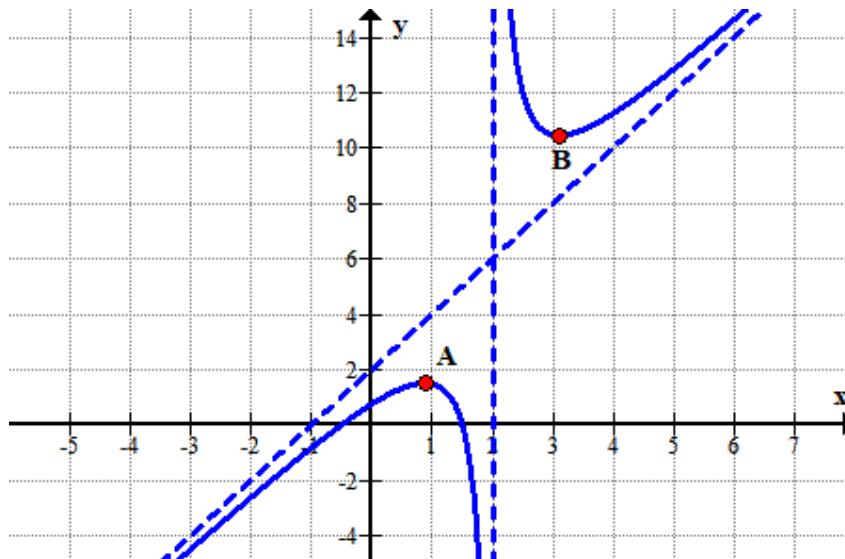
 6. [Maximum mark: 12] **[without GDC]**

Let $f(x) = \frac{(x+2)(x-3)}{3x-6}$


(a) Show that graph of $y = f(x)$ has an oblique asymptote at the line $y = \frac{x+1}{3}$ [3]

(b) Solve the equation $f(x) = 1$. [3]

(c) On the diagram below, sketch the graph of $y = f(x)$. The asymptotes are shown.


Indicate the x - and the y -intercepts and the information found in (b). [4]

(d) Hence, write down the domain and the range of f . [2]

7. [Maximum mark: 10] **[with GDC]**

The following diagram shows part of the graph of $f(x) = \frac{4x^2 - 4x - 3}{2x - 4}$

(a) Express $f(x)$ in the form $f(x) = \frac{(2x+a)(2x-b)}{2x-4}$, where $a, b \in \mathbb{Z}^+$. [2]

(b) Write down the x -intercepts and the equation of the vertical asymptote. [2]

(c) Find the equation of the oblique asymptote. [3]

There is a local maximum at point A and a local minimum at point B as shown above.

(d) Write down the coordinates of A and B and hence the range of $f(x)$. [3]

8. [Maximum mark: 12] **[with / without GDC]**

Express the following rational functions in partial fractions.

(a) $f(x) = \frac{6}{x^2 - x - 2}$

(b) $f(x) = \frac{3x+6}{x^2 - x - 2}$

(c) $f(x) = \frac{x}{2x^2 - 2x - 4}$

 9. [Maximum mark: 10] **[without GDC]**

Consider the polynomial

$$f(x) = (x-1)(x-2)(x-3)(x-4)(x-5)$$

(a) Complete the sign table below (Indicate + or – in each interval)

x	$-\infty$	1	2	3	4	5	$+\infty$
$f(x)$							

[2]

(b) Solve the inequality $f(x) > 0$.

[2]

(c) Solve the inequality $f(x) \geq 0$.

[2]

(d) Solve the inequality $\frac{(x-1)(x-3)(x-5)}{(x-2)(x-4)} > 0$.

[2]

(e) Solve the inequality $\frac{(x-1)(x-3)(x-5)}{(x-2)(x-4)} \geq 0$.

[2]

 10. [Maximum mark: 13] **[without GDC]**

Consider the following functions.

$$g(x) = (x-1)(x-2)(x-3)(x-4)^2(x-5)$$

(a) Complete the sign table below (Indicate + or – in each interval)

x	$-\infty$	1	2	3	4	5	$+\infty$
$g(x)$							

[2]

(b) Solve the inequality $g(x) > 0$.

[2]

(c) Solve the inequality $g(x) \geq 0$.

[2]

(d) Solve the inequality $g(x) < 0$.

[2]

(e) Solve the inequality $g(x) \leq 0$.

[2]

(f) Solve the inequality $\frac{(x-1)(x-3)(x-5)}{(x-2)(x-4)^2} \geq 0$.

[3]

 11. [Maximum mark: 8] **[without GDC]**

Solve the inequalities (notice that they all involve the same factors).

(i) $\frac{5(x-1)(x-2)^2}{(x-3)^3} \geq 0$

(ii) $\frac{(x-1)(x-3)^3}{5(x-2)^2} \geq 0$

(iii) $\frac{(x-2)^2(x-3)^3}{5(x-1)} \geq 0$

12. [Maximum mark: 6] **[with / without GDC]**

Solve the inequality $x + \frac{2}{x} \geq 3$

13. [Maximum mark: 9] **[with / without GDC]**

(a) Solve the equation $\frac{2x-5}{x+3} = 1$. [2]

(b) Solve the inequality $\frac{2x-5}{x+3} \geq 1$. [4]

(c) Hence, solve (i) $\frac{2x-5}{x+3} > 1$ (ii) $\frac{2x-5}{x+3} \leq 1$ (iii) $\frac{2x-5}{x+3} < 1$ [3]

14. [Maximum mark: 10] **[with / without GDC]**

(a) Solve the equation $\frac{2x+5}{x+13} = \frac{x}{x+1}$. [4]

(b) Solve the inequality $\frac{2x+5}{x+13} \leq \frac{x}{x+1}$. [6]

15*. [Maximum mark: 14] **[without GDC]**

The polynomial $f(x) = x^3 - 7x^2 + ax - 9$ is divisible by $(x-1)$.

(a) Find the value of a . [3]

(b) Give full factorization of $f(x)$. [5]

(c) Solve the inequalities
 (i) $f(x) > 0$ (ii) $f(x) < 0$ (iii) $f(x) \geq 0$ (iv) $f(x) \leq 0$ [6]

A. Exam style questions (SHORT)

16. [Maximum mark: 5] **[without GDC]**

Find all the asymptotes (horizontal, vertical, or oblique) of $f(x) = \frac{3x^2 - x + 1}{2x^2 - 14x + 24}$

17. [Maximum mark: 5] **[without GDC]**

Find all the asymptotes (horizontal, vertical, or oblique) of $f(x) = \frac{3x^2 - x + 1}{x^2 - x + 1}$

18. [Maximum mark: 6] **[without GDC]**

Find all the asymptotes (horizontal, vertical, or oblique) of $f(x) = \frac{6x^2 + 5x + 1}{3x + 7}$

19. [Maximum mark: 7] **[without GDC]**

Find all the asymptotes (horizontal, vertical, or oblique) of $f(x) = \frac{6x^3 + 1}{2x^2 - 14x + 24}$

20. [Maximum mark: 7] **[without GDC]**

Express in partial fractions the function $f(x) = \frac{5}{2x^2 - 14x + 24}$

21. [Maximum mark: 7] **[without GDC]**

Express in partial fractions the function $f(x) = \frac{5x + 1}{2x^2 - 14x + 24}$

22. [Maximum mark: 10] **[without GDC]**

(a) Show that $x^3 - x^2 - x + 1 = (x - 1)^2(x + 1)$

[2]

(b) Show that $x^4 - 3x^3 + x^2 + 3x - 2 = (x - 1)^2(x + 1)(x - 2)$

[2]

(c) **Hence**, solve the inequalities

(i) $x^4 - 3x^3 + x^2 + 3x - 2 \geq 0$

(ii) $\frac{x^3 - x^2 - x + 1}{x - 2} > 0$

(iii) $\frac{x^3 - x^2 - x + 1}{x - 2} \geq 0$

[6]

23. [Maximum mark: 8] **[without GDC]**

(a) Show that $4x^3 - 3x + 1 = (2x - 1)^2(x + 1)$

[2]

(b) **Hence**, solve the inequalities

(i) $\frac{4x^3 - 3x + 1}{2 - x} \geq 0$

(ii) $\frac{4x^3 - 3x + 1}{2 - x} \leq 0$

[6]

Notice

Question 23(a) could also be given as follows:

The cubic polynomial $f(x) = 4x^3 - 3x + 1$ is divisible by $(2x - 1)^2$. Find the 3 roots of f and hence factorize $f(x)$ completely.

24. [Maximum mark: 8] **[with / without GDC]**

(a) Solve the equation $\frac{2x^2 - x - 36}{x - 2} = 3$.

[4]

(b) Solve the inequality $\frac{2x^2 - x - 36}{x - 2} \geq 3$.

[4]

25. [Maximum mark: 8] **[with / without GDC]**

Let $f(x) = \frac{x+4}{x+1}$, $x \neq -1$ and $g(x) = \frac{x-2}{x-4}$, $x \neq 4$.

(a) Solve the equation $f(x) = g(x)$. [3]

(b) Find the set of values of x such that $f(x) \leq g(x)$. [5]

26. [Maximum mark: 5] **[with GDC]**

Solve the inequality $x^2 - 4 + \frac{3}{x} < 0$.

27*. [Maximum mark: 8] **[without GDC]**

Solve the inequality $x^2 - 4 + \frac{3}{x} < 0$ given that one of the zeros of the function is $x = 1$.

28. [Maximum mark: 9] **[with / without GDC]**

Let $f(x) = \sqrt{\frac{8x-4}{x-3}}$.

(a) Find the largest set of values of x such that the function f takes real values. [5]

(b) Find $f\left(\frac{1}{2}\right)$ and hence write down the range of f . [2]

(c) Write down

- (i) the equation of the vertical asymptote;
- (ii) the equation of the horizontal asymptote. [2]

29. [Maximum mark: 7] **[with / without GDC]**

The functions f and g are defined by

$$f(x) = 2x - 1, \quad g(x) = \frac{x}{x+1}, \quad x \neq -1$$

Find the values of x for which $(f \circ g)(x) \leq (g \circ f)(x)$.

30. [Maximum mark: 8] **[without GDC]**

The polynomial $f(x) = x^3 - 4x^2 + 3x + a$ is divisible by $(x-1)$.

(a) Find the value of a . [3]

(b) Give full factorization of $f(x)$. [3]

(c) Solve the inequality $f(x) \leq 0$. [2]

31. [Maximum mark: 8] [without GDC]

The polynomial $f(x) = x^3 - 2x^2 + x + a$ is divisible by $(x-1)$.

- (a) Find the value of a . [3]
- (b) Give full factorization of $f(x)$. [3]
- (c) Solve the inequality $f(x) \leq 0$. [2]

32. [Maximum mark: 8] [without GDC]

When $f(x) = x^3 + x^2 + x + a$ is divided by $(x-1)$ the remainder is 3.

- (a) Find the value of a . [3]
- (b) Give full factorization of $f(x)$. [3]
- (c) Solve the inequality $f(x) \leq 0$. [2]

33. [Maximum mark: 6] [without GDC]

The polynomial $f(x) = 3x^3 - a$ is divisible by $(x-1)$.

- (a) Find the value of a . [3]
- (b) Solve the inequality $f(x) \leq 0$. [3]

B. Exam style questions (LONG)

34. [Maximum mark: 24] [with / without GDC]

$$\text{Let } f(x) = \frac{6}{x^2 - 5x + 4}, \quad g(x) = \frac{x^2 - 5x + 10}{x^2 - 5x + 4}, \quad h(x) = \frac{x^3 - 5x^2 + 4x + 12}{x^2 - 5x + 4}$$

- (a) Find the equations of all the asymptotes for the graphs of
 - (i) $y = f(x)$
 - (ii) $y = g(x)$
 - (iii) $y = h(x)$[8]
- (b) Express $f(x)$ in partial fractions[5]
- (c) Express $g(x)$ in the form $g(x) = q + \frac{p}{x^2 - 5x + 4}$, where $p, q \in \mathbb{Z}$ [2]
- (d) Hence express
 - (i) $g(x)$ in the form $g(x) = C + \frac{A}{(x-a)} + \frac{B}{(x-b)}$
 - (ii) $h(x)$ in the form $h(x) = Ex + \frac{C}{(x-c)} + \frac{D}{(x-d)}$[4]
- (e) Solve the inequality $5f(x) \leq 3g(x)$ [5]

35. [Maximum mark: 13] [with / without GDC]

Let $f(x) = \frac{x^3 + 50}{x^2 - 6x + 8}$, $x \neq 2, x \neq 4$

(a) Find the quotient and the remainder of the long division of $x^3 + 50$ by $x^2 - 6x + 8$ [3]

(b) Hence, express $f(x)$ in the form $f(x) = q(x) + \frac{ax + b}{x^2 - 6x + 8}$ [2]

(c) Write down the equations of all the asymptotes of $y = f(x)$ [3]

(d) Express $f(x)$ in the form $f(x) = q(x) + \frac{A}{x-2} + \frac{B}{x-4}$ [5]