

INTERNATIONAL BACCALAUREATE
Mathematics: analysis and approaches
Math AA

EXERCISES [Math-AA 1.6]

BINOMIAL THEOREM

Compiled by Christos Nikolaidis

O. Practice questions

1. [Maximum mark: 9] **[without GDC]**

Write down the expansions of

(a) $(1+x)^3$ and $(1-x)^3$. [3]
(b) $(1+x)^4$ and $(1-x)^4$. [3]
(c) $(1+x)^5$ and $(1-x)^5$. [3]

2. [Maximum mark: 9] **[with GDC]**

Write down the first four terms in ascending powers of x

(a) in the expansion of $(1+x)^{10}$ [3]
(b) in the expansion of $(1+2x)^{10}$ [3]
(c) in the expansion of $(2-x)^{10}$ [3]

3. [Maximum mark: 5] **[with GDC]**

Find the term in x^7 in the expansion of $(1-x)^{10}$

4. [Maximum mark: 5] **[with GDC]**

Find the term in x^{16} in the expansion of $(1-x^2)^{10}$

5. [Maximum mark: 10] **[with GDC]**

(a) Expand (i) $\left(x - \frac{1}{x}\right)^3$ (ii) $\left(x - \frac{1}{x}\right)^4$ [5]

(b) In the expansion of $\left(x - \frac{1}{x}\right)^{10}$
(i) find the constant term
(ii) find the term in x^2
(iii) find the term in x^{-2} . [5]

6*. [Maximum mark: 10] **[with GDC]**

(a) Expand $(2x+1)^4$

[2]

Hence, find

(b) the term in x^2 in the expansion of $x(2x+1)^4$

[2]

(c) the term in x^2 in the expansion of $(x+1)(2x+1)^4$

[3]

(d) the term in x^2 in the expansion of $(3-x^2)(2x+1)^4$.

[3]

7. [Maximum mark: 6] **[without GDC]**

(a) Show that

$$(i) {}^8C_7 = 8, \quad (ii) {}^8C_6 = 28, \quad (iii) {}^8C_5 = 56$$

[3]

(b) Find

$$(i) {}^{10}C_9, \quad (ii) {}^{10}C_8, \quad (iii) {}^{10}C_7$$

[3]

8*. [Maximum mark: 9] **[without GDC]**

(a) Show that

$$(i) {}^nC_0 = 1, \quad (ii) {}^nC_1 = n, \quad (iii) {}^nC_2 = \frac{n(n-1)}{2}$$

[5]

(b) Find similar expressions for

$$(i) {}^nC_3, \quad (ii) {}^nC_4$$

[4]

9*. [Maximum mark: 9] **[with GDC]**

In the expansion of $\left(3x - \frac{2}{x}\right)^{12}$ find

(a) the constant term;

[3]

(b) the coefficient of x^4 ;

[3]

(c) the first three terms in descending powers of x .

[3]

10*. [Maximum mark: 9] **[with GDC]**

In the expansion of $\left(3x^2 - \frac{2}{x}\right)^{12}$ find

(a) the constant term;

[3]

(b) the coefficient of x^6 ;

[3]

(c) the first three terms in descending powers of x .

[3]

11*. [Maximum mark: 9] **[with GDC]**

In the expansion of $\left(3x^3 - \frac{2}{x}\right)^{12}$ find

(a) the constant term;

[3]

(b) the coefficient of x^4 ;

[3]

(c) the first three terms in descending powers of x .

[3]

A. Exam style questions (SHORT)

12. [Maximum mark: 4] **[without GDC]**

Express $(\sqrt{3} + \sqrt{2})^3$ in the form $a\sqrt{2} + b\sqrt{3}$, where $a, b \in \mathbb{Z}$.

13. [Maximum mark: 4] **[without GDC]**

Express $(\sqrt{3} + \sqrt{2})^4$ in the form $a + b\sqrt{6}$, where $a, b \in \mathbb{Z}$.

14. [Maximum mark: 6] **[without GDC]**

Express $(\sqrt{3} - 2)^3$ in the form $a\sqrt{3} + b$, where $a, b \in \mathbb{Z}$.

15. [Maximum mark: 6] **[with / without GDC]**

Given that $(3 + \sqrt{7})^3 = p + q\sqrt{7}$ where p and q are integers, find

(a) p ; (b) q .

16. [Maximum mark: 6] **[without GDC]**

(a) Expand $\left(e + \frac{1}{e}\right)^4$ in terms of e . [4]

(b) Express $\left(e + \frac{1}{e}\right)^4 + \left(e - \frac{1}{e}\right)^4$ as the sum of three terms. [2]

17. [Maximum mark: 6] **[with / without GDC]**

Complete the following expansion.

$$(2 + ax)^4 = 16 + 32ax + \dots$$

18. [Maximum mark: 4] **[with GDC]**

Use the binomial theorem to complete this expansion.

$$(3x + 2y)^4 = 81x^4 + 216x^3y + \dots$$

19. [Maximum mark: 8] **[without GDC]**

Find (i) 7C_3 (ii) ${}^{200}C_2$

20. [Maximum mark: 8] **[without GDC]**

(a) Verify that ${}^5C_2 + {}^5C_3 = {}^6C_3$ [3]

(b) Prove that ${}^{19}C_9 + {}^{19}C_{10} = {}^{20}C_{10}$ [5]

21. [Maximum mark: 4] **[with / without GDC]**

Find the coefficient of a^5b^7 in the expansion of $(a+b)^{12}$.

22. [Maximum mark: 4] **[with / without GDC]**

Find the coefficient of a^3b^4 in the expansion of $(5a+b)^7$.

23. [Maximum mark: 6] **[without GDC]**

The fifth term in the expansion of the binomial $(a+b)^n$ is given by ${}^{10}C_4 p^6 (2q)^4$.

(a) Write down the value of n . [1]
 (b) Write down a and b , in terms of p and/or q . [2]
 (c) Write down an expression for the sixth term in the expansion. [3]

24. [Maximum mark: 5] **[with GDC]**

Find the coefficient of x^7 in the expansion of $(2+3x)^{10}$, giving your answer as a whole number.

25. [Maximum mark: 5] **[with / without GDC]**

Consider the expansion of $(x+2)^{11}$.

(a) Write down the number of terms in this expansion. [1]
 (b) Find the term containing x^2 . [4]

26. [Maximum mark: 6] **[with / without GDC]**

Find the coefficient of x^3 in the expansion of $(2-x)^5$.

27. [Maximum mark: 4] **[with GDC]**

Find the coefficient of x^5 in the expansion of $(3x-2)^8$

28. [Maximum mark: 6] **[with GDC]**

Find the term containing x^3 in the expansion of $(2-3x)^8$.

29. [Maximum mark: 6] **[with GDC]**

Find the coefficient of x^3 in the binomial expansion of $\left(1-\frac{1}{2}x\right)^8$.

30. [Maximum mark: 6] **[with GDC]**

Find the coefficient of the x^3 term in the expansion of $\left(2-\frac{3x}{2}\right)^6$.

31. [Maximum mark: 5] **[with GDC]**

Find the term in x^3 in the expansion of $\left(\frac{2}{3}x-3\right)^8$.

32. [Maximum mark: 6] **[with / without GDC]**

One of the terms of the expansion of $(x + 2y)^{10}$ is $ax^8 y^2$. Find the value of a .

33. [Maximum mark: 6] **[with GDC]**

Find the term containing x^{10} in the expansion of $(5 + 2x^2)^7$.

34. [Maximum mark: 6] **[with GDC]**

Consider the expansion of $(x^2 - 2)^5$.

(a) Write down the number of terms in this expansion. [1]

(b) The first four terms of the expansion in descending powers of x are

$$x^{10} - 10x^8 + 40x^6 + Ax^4 + \dots$$

Find the value of A .

[5]

35. [Maximum mark: 6] **[with GDC]**

Consider the expansion of the expression $(x^3 - 3x)^6$.

(a) Write down the number of terms in this expansion. [1]

(b) Find the term in x^{12} . [5]

36. [Maximum mark: 6] **[with / without GDC]**

Find the term in x^4 in the expansion of $\left(3x^2 - \frac{2}{x}\right)^5$.

37. [Maximum mark: 6] **[with GDC]**

Consider the expansion of $\left(3x^2 - \frac{1}{x}\right)^9$.

(a) How many terms are there in this expansion? [1]

(b) Find the constant term in this expansion. [5]

38. [Maximum mark: 4] **[with GDC]**

Determine the constant term in the expansion of $\left(x - \frac{2}{x^2}\right)^9$.

39. [Maximum mark: 6] **[without GDC]**

Find the constant term in the expansion of $\left(x^2 - \frac{2}{x^2}\right)^6$.

40. [Maximum mark: 6] **[with / without GDC]**

Find the coefficient of x in the expansion of $\left(3x - \frac{2}{x}\right)^5$.

41. [Maximum mark: 6] **[with GDC]**

When the expression $(2 + ax)^{10}$ is expanded, the coefficient of the term in x^3 is 414 720.

Find the value of a .

42. [Maximum mark: 6] **[with GDC]**

The coefficient of x in the expansion of $\left(x + \frac{1}{ax^2}\right)^7$ is $\frac{7}{3}$. Find the possible values of a .

43. [Maximum mark: 6] **[without GDC]**

(a) Expand $(x-2)^4$ and simplify your result. [3]

(b) Find the term in x^3 in $(3x+4)(x-2)^4$. [3]

44*. [Maximum mark: 6] **[without GDC]**

(a) Expand $(2+x)^4$ and simplify your result. [3]

(b) Hence, find the term in x^2 in $(2+x)^4 \left(1 + \frac{1}{x^2}\right)$. [3]

45*. [Maximum mark: 8] **[without GDC]**

(a) Find the expansion of $(2+x)^5$, giving your answer in ascending powers of x . [3]

(b) By letting $x = 0.01$ or otherwise, find the **exact** value of 2.01^5 . [2]

(c) Find the **exact** value of 1.99^5 . [3]

46**. [Maximum mark: 6] **[with GDC]**

Determine the first three terms in the expansion of $(1-2x)^5 (1+x)^7$ in ascending powers of x .

47**. [Maximum mark: 6] **[without GDC]**

Given that

$$(1+x)^5 (1+ax)^6 \equiv 1 + bx + 10x^2 + \dots + a^6 x^{11},$$

find the values of $a, b \in \mathbb{Z}^*$.

48*. [Maximum mark: 6] **[without GDC]**

Find the term in x^2 in $(1+x)^4 \left(3 + \frac{2}{x^2}\right)$

49**. [Maximum mark: 6] **[with / without GDC]**

Find the coefficient of x^3 in the expansion of $(2+x)^4 (1+x^2)^5$

50**. [Maximum mark: 6] **[with GDC]**

Find the constant term in the expansion of $(2+x)^4 \left(2x + \frac{1}{x}\right)^5$

51.** [Maximum mark: 6] **[with GDC]**

- (a) Write down the quadratic expression $2x^2 + x - 3$ as the product of two linear factors.
- (b) Hence, or otherwise, find the coefficient of x in the expansion of $(2x^2 + x - 3)^8$.

52.** [Maximum mark: 9] **[with GDC]**

In the binomial expansion of $(a + x)^n$, where $n \geq 4$, the coefficient of x^3 is twice the coefficient of x^4 .

- (a) Show that $n = 2a + 3$ [5]
- (b) Given that $a = 3$, find the coefficients of x^3 and x^4 . [4]

53.** [Maximum mark: 6] **[with GDC]**

In the expansion of $(1 + ax)^n$ the first term is 1, the second term is $24x$ and the third term is $252x^2$. Find the values of a and n .

54*. [Maximum mark: 8] **[with GDC]**

When $\left(1 + \frac{x}{2}\right)^n$, $n \in \mathbb{N}$, is expanded in ascending powers of x , the coefficient of x^3 is 70.

- (a) Find the value of n . [4]
- (b) Hence, find the coefficient of x^2 . [4]

B. Exam style questions (LONG)

55. [Maximum mark: 12] **[without GDC]**

Consider the binomial expansion $(1 + x)^4 = 1 + {}^4C_1x + {}^4C_2x^2 + {}^4C_3x^3 + x^4$

- (a) By substituting $x = 1$ into both sides, or otherwise, evaluate ${}^4C_1 + {}^4C_2 + {}^4C_3$ [2]
- (b) Evaluate ${}^4C_1 - {}^4C_2 + {}^4C_3$ in a similar way. [3]
- (c) Evaluate ${}^9C_1 + {}^9C_2 + {}^9C_3 + {}^9C_4 + {}^9C_5 + {}^9C_6 + {}^9C_7 + {}^9C_8$. [4]
- (d) Show that ${}^9C_1 + {}^9C_3 + {}^9C_5 + {}^9C_7 = {}^9C_2 + {}^9C_4 + {}^9C_6 + {}^9C_8$. [3]

56.** [Maximum mark: 9] **[without GDC]**

Let $S = a + b$ and $P = ab$. By using the appropriate expansions of $(a + b)^n$, express the following in terms of S and P .

- (a) $a^2 + b^2$ [2]
- (b) $a^3 + b^3$ [3]
- (c) $a^4 + b^4$ [4]