CHAPTER ONE: FUNCTIONS AND THEIR GRAPHS

1-A Functions

relation • independent variable • dependent variable • function • vertical line test • argument

• Determine whether or not a relation is a function.

Identify which of the following are functions. For those that are not, demonstrate this by giving a single value of *x* that results in two different values of *y*.
 a) The parabola at right
 b) y = ±√x

d) $y = \sqrt{x}$

c) The set of ordered pairs { (3, 5), (5, 2), (3, 9) }

e) y = the team that won the Superbowl in year x

f) y = the year team x won the Superbowl

2 Identify the argument of a function.

• For the equation $\sqrt{2x-1} - 12 = 4 \cos(5x - 20) + \tan 6x - 20$, identify the argument of the following functions. a) the square root function b) the cosine function c) the tangent function

③ Use function notation.

③ Write the following in function notation, and then plug in 5 for each independent variable. a) $y = x^2 + 3x$ b) $A = \pi r^2$ c) Austin makes \$10 an hour.

1-B Domain and Range

domain • range

Identify the domain and range of a graphed function.
 Identify the domain and range of the function graphed at right.

0	Identify the domain of a function in function notation. Identify the domain of the following functions. 						
	a) $a(x) = x$	b) $b(x) = \frac{1}{x}$	c) $c(x) = \sqrt{x}$	d) $d(x) = \log x$	g		
	e) $e(x) = \frac{1}{2x-8}$	f) $f(x) = \sqrt{2x - 8}$	g) $g(x) = \log(2x - 8)$	h) $h(x) = \frac{\log x}{3}$	<u>(2x +</u> √20	<u>⊦7)</u> -x	

1-C Composition and Inverses

composition • inverse • one-to-one • horizontal line test

• Evaluate compositions of functions.

Given f(x) = 4x - 10 and $g(x) = x^2 + 2x - 3$, evaluate the following. a) f(g(3)) b) g(f(3))

Find a simplified expression for a composition of functions.
 Using the functions f and g, above, give an expression for the following.
 a) f(g(x))
 b) g(f(x))

Due Monday, December 12

8	Identify the inverse of a basic function by definition.						
	• Identify the inverse of each of the following functions, and verify that $f^{-1}(f(x)) = x$.						
	a) $a(x) = x + 5$	b) $b(x) = 5x$	c) $c(x) = x^5$				

d) $d(x) = 5^x$

- Oetermine whether or not two functions f and g are inverses of each other.
 Are f(x) = 4x + 8 and g(x) = ^x/₄ − 8 inverses of each other?
- Identify the inverse of a relation conceptually.
 f(x) = 7x is the number of minutes it takes Jon to run x miles. (Miles are plugged in to calculate minutes.)
- Find the inverse of a relation algebraically.
 Find the inverse of the following functions.
 a) f(x) = x 8
 b) g(x) = 2x + 1
 c) h(x) = x²
- Find the inverse of a relation graphically.
 Sketch the graph of the inverse of the parabola shown at right.
- Oetermine whether or not the inverse of a graph is a function.
 Why isn't the inverse of the function graphed above also a function?

1-D Calculator Input and Output

scientific notation • significant figures

- Identify calculator errors with parentheses and negatives.
 - **1** Identify and correct the errors in "24+-8²/ $\sqrt{(90/11-(-8)+2")}$ to evaluate f(8), given $f(x) = \frac{24+x^2}{\sqrt{90/11-x+2}}$.
- Quickly evaluate an expression for multiple values of a variable.
 Qiven the function f(x) = $\frac{24 + x^2}{\sqrt{n}/n x + 2}$, evaluate f(8) and f(-8).
- Convert calculator notation to scientific notation and to standard notation.
 a) 2.57 E 3
 b) 2.57 E -3
- Convert standard notation to scientific notation.
 a) 2700 b) 2700 exactly c) .002700
- Count significant figures.
 a) 304,900
 b) .0304900
- Use appropriate rounding in a word problem involving decimals.
 On a statistics test, a problem asked to find a sample size (number of people) by calculating (²/₃)(¹/₃)(^{3.98}/_{.72-^{2/3}})².

c) 2.0304900

Graph a function on the calculator.
 Display f(x) = x² over the domain -8 ≤ x ≤ 8 and range -5 ≤ y ≤ 40.

d) 3.04900 x 10⁻¹²

③ Change the viewing area of the screen automatically.

1-E Transformations

transformation • pre-image • image • translation • stretch • reflection

- Translate a function *h* units right and *k* units up.
 - Translate the pre-image $f(x) = 2x^2 5x 4$ three units left and five units up.
- Stretch a function horizontally by a factor of b and vertically by a factor of a.
 Stretch the pre-image f(x) = 2 + sin x by a factor of 2 vertically (twice as tall) and by a factor of ¹/₃ horizontally (one third as wide).
- Reflect a function across the y-axis and/or the across the x-axis.
 Reflect the pre-image f(x) = x² + 3x 2 across the stated axis.
 a) the y-axis
 b) the x-axis
- Apply multiple transformations to a function.
 Transform the pre-image f(x) = x² 6x + 9 by doing the following.
 a) Reflect it across the x-axis, and then translate it up four units.
 b) Translate it up four units, and then reflect it across the x-axis.
- Given the graph of f(x), sketch f(x h) + k. Given f(x), graph f(x + 3) + 1.
- **6** Given the graph of f(x), sketch $a \cdot f(x/b)$. **6** Given f(x), graph 2f(2x).
- Given the graph of f(x), sketch f(-x) or -f(x).
 Given f(x), graph f(-x) and -f(x).
- Use the equation of a pre-image to find the equation of a graph.
 Write the equation for g(x) graphed at right.

1-F Quadratics

quadratic equation • vertex • minimum • maximum • quadratic formula • x-intercept • discriminant

- Identify the vertex of a quadratic in vertex form.
 - **1** a) $y = \frac{1}{8}(x-2)^2 + 3$ b) $y = \frac{1}{8}(x+2)^2 3$
- Find the vertex of a parabola in standard form.
 f(x) = 2x² 10x + 7
- S Find the vertex of a parabola in intercept form. S $f(x) = \frac{1}{5}(x-4)(x+6)$
- Solve a quadratic equation by factoring. $2x^2 + x = 15$

(b) Use the discriminant to determine the number of *x*-intercepts of a parabola. **(b)** $y = 9x^2 - 6x + 1$

- Sketch the graph of a parabola from an equation. $y = x^2 - 12x + 20$
- Write the equation of a parabola from a graph.Write the equation of the parabola at right.

CHAPTER TWO: TRIGONOMETRIC FUNCTIONS

2-A Angles in Right Triangles

trigonometric function • sine • cosine • tangent • cotangent • secant • cosecant • inverse trigonometric function • sin⁻¹ (arcsin) • cos⁻¹ (arccos) • tan⁻¹ (arctan)

- Find the values of each of the six trigonometric functions of an angle in a right triangle with two known sides.
 Find the sine, cosine, tangent, cosecant, secant, and cotangent of angle A shown at right.
- Find values of cotangent, secant, and cosecant on the calculator.
 Evaluate sec 25°.
- Calculate a side length in a right triangle based on a known angle and known side length.
 Solve for *c* in the triangle at right.
- Calculate an angle measure in a right triangle based on two known side lengths.
 Solve for A in the triangle at right.

Solve a right triangle. a) 12 c B

2-B Angles in Circles

standard position • coterminal • initial side • terminal side • quadrant • reference angle

• Find the values of the trigonometric functions for an angle in standard position that passes through a specific point (*x*, *y*).

b)

50°

- Find the cosine of an angle θ in standard position that passes through the point (3, -2).
- Find angles coterminal to a given angle.
 Find three angles coterminal to 240°.

Due Tuesday, December 13

- Sketch an angle in standard position. 8 Sketch 840° in standard position.
- 4 Find an angle's reference angle. • Find the reference angle for a 300° angle.
- \bullet Use a reference angle to find the values of the trigonometric functions for an angle θ that is a multiple of 30° or 45°. • Find all six trigonometric ratios for 300°

2-C **Radians**

radian

Convert between degree and radian measure. 0 • a) Convert $\frac{11\pi}{6}$ to degrees.

b) Convert 135° to radians.

- Por angles measured in radians, draw sketches, find coterminal angles and reference angles, and find trig ratios. **2** Do the following for the angle $\theta = \frac{14\pi}{3}$. c) Find its reference angle. d) Find the cosine.
 - a) Find a coterminal angle. b) Sketch it.
- Find the area of a sector. ഒ • Find the area of the sector at right. 2-D **The Unit Circle** unit circle • Use a unit circle to find the values of the trigonometric functions for an angle θ that is a multiple of $\pi/_6$ (30°) or ^π/₄ (45°). c) sec $\frac{3\pi}{2}$ d) sin $\frac{10\pi}{3}$ **1** a) cos 120° b) tan 150° Use a unit circle to find the value of an inverse trigonometric function for an angle shown in the unit circle. 0
- Find the following in degrees (if possible). a) sin⁻¹ ½ b) cos⁻¹ ½ c) sin⁻¹ ⁻¹/₂ d) tan⁻¹ -1 e) tan^{-1 $\frac{\sqrt{3}}{3}$} f) cos⁻¹ 2

Prind the following in radians (if possible). a) $\sin^{-1}\frac{\sqrt{2}}{2}$ b) tan⁻¹ -1

2-E **Trigonometric Identities**

reciprocal identity • quotient identity • Pythagorean identity • double angle identity • conjugate • verify

- Rewrite a trigonometric expression without fractions. 0
 - Simplify $\frac{\sin x}{\cos^2 x}$.
- **2** Rewrite a trigonometric expression using only sine and cosine. **2** Rewrite $\csc^2 x \cot x$.

	• Rewrite using a Pythagorear a) $6 \cot^2 x + 2$	n identity.	b) 5 cos <i>x</i> – 3 sin ² <i>x</i>	
4	Split a fraction with mul 4 Write $\frac{1-\sin x}{\cos x}$ as two separate fr	tiple terms in the num actions.	erator into separate fra	ctions.
6	Add or subtract terms w Subtract $\frac{1}{\sin x} - \frac{\sin x}{\tan x}$.	hen one or both are fr	actions.	
6	Use a conjugate to simp Simplify $\frac{\cos x}{1-\sin x}$.	lify a trigonometric fra	ction.	
0	Factor trigonometric ex 	pressions. b) $\tan^2 x + 8 \tan x + 15$	c) 2 <i>x</i> ³ + 16 <i>x</i> + 30	d) 2 tan ³ x + 16 tan ² x + 30 tan x

- **③** Verify a trigonometric identity.
 - Overify the following identities, and label each step with one of the methods O through O shown in the notes. b) $\frac{1}{\sin x - \sin x \cos x} = \csc^3 x + \cot x \csc^2 x$
 - a) $\cot x + \tan x = \csc x \sec x$

CHAPTER THREE: TRIGONOMETRIC EQUATIONS

Due Thursday, December 15

Solving Simple Trigonometric Equations Algebraically 3-A general solution

Rewrite a trigonometric expression using a Pythagorean identity.

- Use the unit circle to find two solutions to a simple trigonometric equation. **1** a) sin $\theta = \frac{1}{2}$ b) cos $\theta = \frac{\sqrt{3}}{2}$ c) tan $\theta = \frac{\sqrt{3}}{3}$
- **2** Use an inverse function to find two solutions to a simple trigonometric equation. Θ a) sin $\theta = \frac{1}{2}$ b) cos $\theta = \frac{\sqrt{3}}{2}$ c) tan $\theta = \frac{\sqrt{3}}{2}$
- Find all solutions to a simple trigonometric equation within a given range. Solutions to sin $\theta = \frac{1}{2}$ in the range -360° < θ < 810°.

3-B Solving Complicated Trigonometric Equations Algebraically

• Use algebra and basic trig identities to simplify an equation, and solve it. • Find all solutions to $5 \sec^2 3\theta = 10$ in the range $0^\circ < \theta < 360^\circ$.

Solve a trigonometric equation by factoring. Find all solutions to tan³ 3θ + tan² 3θ = 20 tan 3θ in the range $0^{\circ} \le \theta \le 90^{\circ}$.

3-C Graphs of Sine and Cosine Functions

amplitude • period • phase shift

- Stretch $y = \sin x$ to have a specified amplitude and period.
 - Write a sine equation that has an amplitude of 4 and a period of $\frac{\pi}{3}$.
- Translate y = a sin bx with a phase shift of c to the right and a vertical shift of d upward.
 Translate y = 3 sin 2x left by ^π/₄ and up by 2.
- Identify the amplitude, period, phase shift, and vertical shift of an equation of the form y = d + a sin b(x c).
 y = 4 5 sin 6(x + \frac{\pi}{3})
- Write the equation of a graphed sine or cosine function.
 Write a sine equation and a cosine equation for the graph at right.
- **5** Sketch $y = d + a \sin b(x c)$ or $y = d + a \cos b(x c)$. **6** Graph $y = 1 - 3 \sin \frac{3}{2}(x - \frac{2\pi}{3})$ and $y = 1 - 3 \cos \frac{3}{2}(x - \frac{2\pi}{3})$.
- Sketch y = d + a sin (bx − bc) or y = d + a cos (bx − bc).
 Graph y = 1 − 3 sin ($\frac{3x}{2} − π$).

3-D Solving Trigonometric Equations Graphically

- Solve a system of two equations by graphically finding the points of intersection. • Find the points of intersection of $f(x) = 2 \sin 3x$ and g(x) = x + 1.
- Solve an equation by finding the points of intersections of two graphs. $2 \sin 3x = x + 1$

CHAPTER FOUR: NONRIGHT TRIANGLES

Due Monday, December 19

4-A The Law of Sines

law of sines • altitude • ambiguous case

• Solve an AAS or ASA triangle.

Given SSA, identify whether zero, one, or two triangles exist.
State the number of triangles that exist for the given information.
a) A = 30°, a = 5, c = 20
b) A = 30°, a = 25, c = 20
c) A = 30°, a = 15, c = 20

- Solve an SSA triangle.
 - Solve and sketch the following triangles, if they exist.
 - a) $b = 20, C = 50^{\circ}, c = 16$ b) $b = 20, C = 50^{\circ}, c = 25$ c) $b = 20, C = 50^{\circ}, c = 10$

4-B The Law of Cosines

law of cosines

• Solve an SSS or SAS triangle.

4-C Areas of Triangles

- Find the area of a nonright triangle.
 - Find the area of a triangle with m = 8, n = 13, and p = 15.
 - Find the area of a triangle with m = 20, n = 14, and $P = 116^{\circ}$.
 - Find the area of a triangle with m = 24, $M = 99^{\circ}$, $N = 31^{\circ}$.